Plans for Kaon Physics at BNL

The dynamic duo: $K^+ \to \pi^+ \nu \overline{\nu}$ & $K_L \to \pi^0 \nu \overline{\nu}$

HIF04. June 5-8, 2004

George Redlinger

Brookhaven National Laboratory

Introduction

The kaon unitarity triangle:

$$V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} = 0 \qquad \text{or } \lambda_{u} + \lambda_{c} + \lambda_{t} = 0$$

or
$$\lambda_{\rm u} + \lambda_{\rm c} + \lambda_{\rm t} = 0$$

- $K \to \pi \nu \overline{\nu}$ and $K^+ \to \pi^0 e^+ \nu$ decays completely determine the UT.
- $K_L \to \pi^0 \nu \overline{\nu}$ provides direct measurement of triangle area $(J_{CP},$ "the price of CP" violation" in the quark sector). Theoretical uncertainty on BR $\sim 2\%$.
- $K^+ \to \pi^+ \nu \overline{\nu}$ probes both real and imaginary parts of λ_t . BR uncertainty (th) $\sim 7\%$. Buras: NNLO QCD calculation should reduce this to $\sim 2\%$ (hep-ph/0405132)
- Comparison with UT determination from B sector will be a powerful tool to try to unravel the flavor dynamics
- The future of kaon physics at BNL will be primarily centered on measuring this "dynamic duo": $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L \to \pi^0 \nu \overline{\nu}$.

$$K^+ \to \pi^+ \nu \overline{\nu}$$

- **Std.** Model expectation: $(0.78 \pm 0.12) \times 10^{-10}$ (hep-ph/0405132)
- **Proof** BNL E787 (1995-98) observed 2 $K^+ \to \pi^+ \nu \overline{\nu}$ candidates with a background of 0.15 ± 0.05 events
- Likelihood analysis based on additional signal/bkg discrimination yielded:
 - ▶ Probability of bkg alone giving rise to these 2 (or "cleaner") events = 0.0014.
 - BR($K^+ \to \pi^+ \nu \overline{\nu}$) = 1.57 $^{+1.75}_{-0.82} \times 10^{-10}$.
- E787 was primarily limited by proton flux from AGS on K production target.
- E949 is based on "modest" upgrades to the E787 program.
 - Use "entire" proton flux. 15×10^{12} p/spill $\rightarrow 65 \times 10^{12}$
 - Longer AGS running during RHIC operation (≥ 25 weeks/yr)
 - Detector upgrades: photon veto, π^+ tracking and kinematic resolution, trigger/DAQ, K^+ tracking system
- \blacksquare Aimed at SES $\leq 10^{-11}$ or 5-10 SM events

Recall E787/E949 technique

- Incoming beam $(\sim 700 MeV/c)$ tagged by Cerenkov, dE/dx counters.
- Stopped kaon beam. Delayed coincidence cut against scattered beam π . High geometrical acceptance.
- Stopped decay pion.

 Redundant measurements of kinematics. Observation of $\pi \to \mu \to e$ decay sequence for μ rejection.
- Photon veto counters surround everything. Minimize inactive material.

BNL E949: Beam

E949 (2002) protons on target (typical day)

Proton intensity:

Not optimal in 2002:

- Short run (see plot at left)
- lacksquare K/π separator problems

BNL E949: Detector upgrades

PV rejection (E787 & E949)

E949 momentum resolution

- lacksquare Photon veto: imes 2 more rejection at nominal acceptance
- lacksquare Comparable momentum resolution at imes 2 instantaneous rate

Offline analysis

Robust estimate of background at < 1 event level

- Blind analysis
 - Signal region is hidden (by inverting cuts) while cuts are developed and background levels estimated
 - Cuts against background developed with uniformly sampled subset of data. Effect of cuts is measured (once) in an unbiased way on remainder of data.
- "Bifurcated" analysis
 - A priori identification of background sources
 - Same dataset for background studies and signal search
 - Two independent cuts with high rejection for each background
 - ullet Measurement of background levels in the signal region at the $10^{-3}-10^{-2}$ level
- Correlation studies
- Prediction of background levels around signal region (followed by measurement)
- Likelihood analysis (using predetermined likelihood functions) in the signal region for assessing candidate events.
- New in E949. More confidence in the likelihood technique, and shifting philosophy from "discovery mode" to "measurement mode". ⇒ open up the signal region (more background) and rely on likelihood analysis for BR.

"Bifurcated" analysis

 $K^+ \to \pi^+ \pi^0$ background as an example:

Events tagged with presence of γ s

$$N_{bkg} = \frac{N}{R_{PV} - 1}$$

Events tagged by $K_{\pi 2}$ kinematics

$K^+ \to \pi^+ \nu \overline{\nu}$. First result from E949

E949 (2002) + E787 (95-98)

	E787		E949	
N_K	5.9×10^{12}		1.8×10^{12}	
Total Acceptance	0.0020 ± 0.0002		0.0022 ± 0.0002	
Total Background	0.14 ± 0.05		0.30 ± 0.03	
Candidate	1995A	1998C	2002A	
S_i/b_i	50	7	0.9	
W_i	0.98	0.88	0.48	
Background Prob.	0.006	0.02	0.07	

- **■** BR($K^+ \to \pi^+ \nu \overline{\nu}$) = $(0.96^{+4.09}_{-0.47}) \times 10^{-10}$ (E949 alone)
- BR($K^+ \to \pi^+ \nu \overline{\nu}$) = $(1.47^{+1.30}_{-0.89}) \times 10^{-10}$ (E787+E949)
- Std Model expectation: BR($K^+ \to \pi^+ \nu \overline{\nu}$) = $(0.78 \pm 0.12) \times 10^{-10}$ (hep-ph/0405132)
- Backgrounds under good control, determined almost entirely from the data
- Ready/waiting to take more data (12 weeks in 2002; proposal: 60 weeks)

$K^+ \to \pi^+ \nu \overline{\nu}$. Impact on unitarity triangle

(figure courtesy G. Isidori)

- Remove B-mixing constraints from UT (assume new physics is present in B-mixing)
- **●** Dark circles show constraints from $BR(K^+ \to \pi^+ \nu \overline{\nu})$
- Obviously needs more statistics

$K^+ \to \pi^+ \nu \overline{\nu}$. Other recent results

New E787 result on kinematic region below $K^+ \to \pi^+ \pi^0$ peak from analysis of 1997 data

	E787 (1996)	E787 (1997)
N_K	1.12×10^{-12}	0.61×10^{-12}
Total Acceptance	7.65×10^{-4}	9.7×10^{-4}
Total Background	0.73 ± 0.18	0.49 ± 0.16
# events seen	1	0

- **●** E787(96+97): BR($K^+ \to \pi^+ \nu \overline{\nu}$) < 2.2 × 10⁻⁹ ($p_\pi < 195$ MeV/c) ⇒ ×2 improvement
- Backgrounds more difficult ($K^+ \to \pi^+ \pi^0$ with π^+ scatter in K stopping target; π^0 heads towards region of weak photon coverage)
- Photon veto is improved in E949. Improvement in barrel region already demonstrated in analysis above $K^+ \to \pi^+ \pi^0$ peak. Improvement in beam region (crucial for this analysis) remains to be seen. Other ideas to increase acceptance (or rejection) under study.

$$K_L \to \pi^0 \nu \overline{\nu}$$

- Std. Model expectation: $(0.30 \pm 0.06) \times 10^{-10}$ (hep-ph/0405132)
- Grossman-Nir bound:

$$\frac{BR(K_L \to \pi^0 \nu \overline{\nu})}{BR(K^+ \to \pi^+ \nu \overline{\nu})} < \frac{\tau_L}{\tau_+} \times \frac{1}{r_{is}} \sim 4.4$$

$$or \ BR(K_L \to \pi^0 \nu \overline{\nu}) < 1.4 \times 10^{-9}$$

- Best experimental limit so far comes from KTeV (1997) utilizing Dalitz decay of π^0 : BR $(K_L \to \pi^0 \nu \overline{\nu}) < 5.9 \times 10^{-7}$ (90% CL)
- Future experiments will utilize the $\pi^0 \to \gamma \gamma$ mode

KTeV $(K_L \to \pi^0 \nu \overline{\nu}, \pi^0 \to \gamma \gamma)$. One day test run in 1997.

- "Pencil" beam
- Background consistent with neutron interactions
- BR($K_L \to \pi^0 \nu \overline{\nu}$) < 1.6×10⁻⁶ (90% CL)

$K_L \to \pi^0 \nu \overline{\nu}$. KEK E391a

KEK E391a is the first dedicated experiment to search for $K_L \to \pi^0 \nu \overline{\nu}$.

- "Pencil" beam, high acceptance.
- Punning Now! since mid-February 2004 through June. Could reach SES $\sim 4 \times 10^{-10}$ (below Grossman-Nir bound) assuming very loose photon veto cuts.
- Prototype for future experiments at e.g. JPARC. Photon veto performance will be very interesting for e.g. KOPIO.
 G.Redlinger · HIF04 p. 13

KOPIO @ BNL

KOPIO at BNL takes a unique approach:

- lacksquare Low energy beam. $\sim 45^\circ$ production angle. TOF to get K_L momentum
- Photon angle measurement to get K_L decay vertex and π^0 direction.
- Kinematic rejection relaxes photon veto requirements, provides redundancy needed to measure the dominant background in the signal region from data (a la E787). Full kinematic reconstruction suppresses many other backgrounds.
- ullet Large angle production suppresses hyperons, π^0 production from beam halo neutrons

Background suppression: $K_L \to \pi^0 \pi^0$

 $K_L \to \pi^0 \pi^0$ with 2 missing photons is the dominant background:

Background suppression: $K_L \to \pi^0 \pi^0$

Miss-Mass vs. Miss-E (Kpi2-even)

- Missing energy cut effective in removing events where low-E γ lost.
- For asymmetric π^0 decays, cut on missing mass is effective.

$$M_{miss} \propto \sqrt{E_{miss\gamma 1} \cdot E_{miss\gamma 2}}$$

Photon veto

- π^0 detection inefficiency of 10^{-8} is required.
- E787 obtained $\sim 10^6$ rejection of π^0 :

$$\overline{\epsilon}_{\gamma} \sim 10^{-4} E_{\gamma} = [100, 220] \text{MeV}$$

$$\sim 10^{-2} E_{\gamma} = [20, 100] \text{MeV}$$

Low energy γ s in KOPIO are suppressed with cuts on missing mass/energy ⇒

$$\overline{\epsilon}_{\pi^0} < (10^{-4})(10^{-4}) = 10^{-8}$$

KOPIO goal: $\overline{\epsilon}_{\gamma} \sim 0.3 \times \overline{\epsilon}(787)$

Charged particle veto

particle	e^-	e^+	π^-	π^+
ineff	$< 10^{-5}$	$< 10^{-4}$	$< 10^{-4}$	$< 10^{-5}$

- To reach 10^{-4} for π^- , detection threshold must be $\sim 75 keV$ (0.3mm of scintillator)
- ullet Tests with scintillator sheets with direct PMT readout reach threshold $\sim 10 keV$

Inefficiency measurements at PSI

Kinematic handles on charged modes

$$K_L \to \pi^{\pm} e^{\mp} \nu \gamma$$
:

$$K_L \to \pi^+\pi^-\pi^0$$
:

Background summary

Modes	Main source	Events
$K_L \to \pi^0 \nu \overline{\nu} \ (B = 3 \times 10^{-11})$		49
$\pi^0 \pi^0, \ \pi^0 \pi^0 \pi^0, \ \pi^0 \gamma \gamma$	$\pi^0\pi^0$	14
$\pi^{\pm}l^{\mp} u\gamma$, $\pi^{\pm}l^{\mp} u\pi^{0}$, $\pi^{+}\pi^{-}\gamma$	$\pi^- e^+ \nu \gamma$	5
$\pi^{+}\pi^{-}\pi^{0}$		3
Other	Accidentals	1
$\gamma\gamma$		
$\pi^{\pm}e^{\mp}\nu, \ \pi^{\pm}\mu^{\mp}\nu, \ \pi^{+}\pi^{-}$		
$\Lambda \to \pi^0 n, \ \Sigma^+ \to \pi^0 p, \ K^{\pm} \to \pi^{\pm} \pi^0$		
Interactions: n, K_L,γ		
Accidentals: n, K_L,γ		
Total background		23

• Acceptance: 9×10^{-3}

9600 hours

Beam

- Proton beam
 - ho $100 imes 10^{12}$ protons per 2.7 sec spill; 5 sec cycle time; needs AGS injection energy upgrade
 - $ho \sim 25~{
 m GeV/c}$
 - Slow extraction with micro-bunching ($\sigma = 200ps$ every 40 ns)
 - Interbunch extinction $\sim 10^{-3}$
- lacksquare K_L beam
 - $ightharpoonup \sim 45^{\circ}$ production angle
 - Low energy "pancake" beam: [0.5,1.5] GeV, $5mr \times 100mr$
 - ho $\sim 10^8 K_L$ per spill, 12% decay
 - $ightharpoonup \sim 10^{11} \,$ neutrons per spill
 - ✓ Vacuum $\sim 10^{-7}$ Torr

Microbunching: bunch width

93 MHz data

93 MHz simulation

KOPIO Simulation (185ps width)

- Beam tests of microbunching have been done with a 93MHz RF cavity.
- KOPIO: 25 MHz cavity to get 40ns microbunch spacing and 100 MHz cavity to get the microbunch width

Microbunching: interbunch extinction

- Extinction of $\sim 10^{-3}$ desired
- Need to control power supply ripple
- New test beam run just completed:
 - Improved systematics (\overline{p} beam)
 - Bunch width/extinction measured in a matrix of RF frequency, RF voltage and \(\frac{\Delta p}{n}\)
 - Offline data analysis and comparisons to 4D simulation in progress

Preradiator

- ightharpoonup Track $\gamma
 ightharpoonup e^+e^-$ early in the shower. $\sigma_{ heta} \sim 25mr$ needed.
- $ightharpoonup \sim 0.03 X_0$ per layer. $2X_0$ in total.
- In progress: full scale prototypes, HV and readout electronics, scintillator production, full mechanical design

Photon beam. Prototype chamber.

Shashlyk Calorimeter

- $16X_0$ (18 including preradiator)
- Photon beam test results:

In progress: full mechanical design, HV and readout electronics, monitoring system, APD cooling system

Catcher

Requirements:

- Photon efficiency > 98.5% at 300 MeV
- Neutron sensitivity < 0.2% at 800 MeV</p>

This year:

- Charged beam test of prototype module
- Light yield as a function of position, incident angle

Simulation:

Outlook

- E949 detector is working well. Analysis of data on $K^+ \to \pi^+ \nu \overline{\nu}$ (above $K^+ \to \pi^+ \pi^0$ peak) completed. Central value of BR remains high, but needs more statistics.
- DOE had approved running E949 for 60 weeks, but terminated the program after 12 weeks. Proposal submitted to NSF to run E949 during RSVP construction phase.
- KOPIO R&D phase is winding down. Key features of the concept have been established. Advanced planning for the construction phase is beginning.
- The RSVP program (KOPIO: $K_L \to \pi^0 \nu \overline{\nu}$ and MECO: $\mu^- N \to e^- N$) was included in the FY04 President's Budget request for a 2005 construction start.
- J. Whitmore (NSF) presentation at BNL (May 04)

Outlook

- Although focus has been on the "dynamic duo", other kaon experiments have been discussed for the AGS.
 - E923: μ polarization in $K^+ \to \pi^0 \mu^+ \nu$ (T-violation)
 - E927: Precision measurement of $K^+ \to \pi^0 e^+ \nu$ ($|V_{us}|$)
 - μ polarization in $K^{\pm} \to \pi^{\pm} \mu^+ \mu^-$ and $K_L \to \pi^0 \mu^+ \mu^-$ (V_{td})
- L. Littenberg: "interesting AGS capabilities facilitate new ideas"
 - High intensity beams
 - Microbunching
 - Low energies (TOF, stopped K, stopped μ)